The Augmented Lagrange Multipliers Method for Matrix Completion from Corrupted Samplings with Application to Mixed Gaussian-Impulse Noise Removal
نویسندگان
چکیده
This paper studies the problem of the restoration of images corrupted by mixed Gaussian-impulse noise. In recent years, low-rank matrix reconstruction has become a research hotspot in many scientific and engineering domains such as machine learning, image processing, computer vision and bioinformatics, which mainly involves the problem of matrix completion and robust principal component analysis, namely recovering a low-rank matrix from an incomplete but accurate sampling subset of its entries and from an observed data matrix with an unknown fraction of its entries being arbitrarily corrupted, respectively. Inspired by these ideas, we consider the problem of recovering a low-rank matrix from an incomplete sampling subset of its entries with an unknown fraction of the samplings contaminated by arbitrary errors, which is defined as the problem of matrix completion from corrupted samplings and modeled as a convex optimization problem that minimizes a combination of the nuclear norm and the l(1)-norm in this paper. Meanwhile, we put forward a novel and effective algorithm called augmented Lagrange multipliers to exactly solve the problem. For mixed Gaussian-impulse noise removal, we regard it as the problem of matrix completion from corrupted samplings, and restore the noisy image following an impulse-detecting procedure. Compared with some existing methods for mixed noise removal, the recovery quality performance of our method is dominant if images possess low-rank features such as geometrically regular textures and similar structured contents; especially when the density of impulse noise is relatively high and the variance of Gaussian noise is small, our method can outperform the traditional methods significantly not only in the simultaneous removal of Gaussian noise and impulse noise, and the restoration ability for a low-rank image matrix, but also in the preservation of textures and details in the image.
منابع مشابه
Hyperspectral Image Restoration via Total Variation Regularized Low-rank Tensor Decomposition
Hyperspectral images (HSIs) are often corrupted by a mixture of several types of noise during the acquisition process, e.g., Gaussian noise, impulse noise, dead lines, stripes, and many others. Such complex noise could degrade the quality of the acquired HSIs, limiting the precision of the subsequent processing. In this paper, we present a novel tensor-based HSI restoration approach by fully id...
متن کاملImproved Adaptive Median Filter Algorithm for Removing Impulse Noise from Grayscale Images
Digital image is often degraded by many kinds of noise during the process of acquisition and transmission. To make subsequent processing more convenient, it is necessary to decrease the effect of noise. There are many kinds of noises in image, which mainly include salt and pepper noise and Gaussian noise. This paper focuses on median filters to remove the salt and pepper noise. After summarizin...
متن کاملMixed Noise Removal Method Based on Sparse Representation and Dictionary learning: WESNR
Noise removal is the fundamental problem in image processing.Knowledge of Noise Distribution is important in image denoising. Removing mixed noise from an image is since a difficult task as the characteristics of different types of noises are different.The commonly experienced mixed noise is impulse Noise(IN) together mixed with additive White Gaussian noise(AWGN).Various mixed noise removal me...
متن کاملIntroduction to a simple yet effective Two-Dimensional Fuzzy Smoothing Filter
Annihilation or reduction of each kind of noise blended in correct data signals is a field that has attracted many researchers. It is a fact that fuzzy theory presents full capability in this field. Fuzzy filters are often strong in smoothing corrupted signals, whereas they have simple structures. In this paper, a new powerful yet simple fuzzy procedure is introduced for sharpness reduction in ...
متن کاملRemoval of Gaussian and Impulse Noise in the Colour Image Progression with Fuzzy Filters
This paper is concerned with algebraic features based filtering technique, named as the adaptive statistical quality based filtering technique (ASQFT), is presented for removal of Impulse and Gaussian noise in corrupted colour images. A combination of these two filters also helps in eliminating a mixture of these two noises. One strong filtering step that should remove all noise at once would i...
متن کامل